Compiling Conformant Probabilistic Planning Problems into Classical Planning
نویسندگان
چکیده
In CPP, we are given a set of actions (assumed deterministic in this paper), a distribution over initial states, a goal condition, and a real value 0 < θ ≤ 1. We seek a plan π such that following its execution, the goal probability is at least θ. Motivated by the success of the translation-based approach for conformant planning, introduced by Palacios and Geffner, we suggest a new compilation scheme from CPP to classical planning. Our compilation scheme maps CPP into cost-bounded classical planning, where the cost-bound represents the maximum allowed probability of failure. Empirically, this technique shows mixed, but promising results, performing very well on some domains, and less so on others when compared to the state of the art PFF planner. It is also very flexible due to its generic nature, allowing us to experiment with diverse search strategies developed for classical planning. Our results show that compilation-based technique offer a new viable approach to CPP and, possibly, more general probabilistic planning problems.
منابع مشابه
Compiling Uncertainty Away in Non-Deterministic Conformant Planning
It has been shown recently that deterministic conformant planning problems can be translated into classical problems that can be solved by off-the-shelf classical planners. In this work, we aim to extend this formulation to non-deterministic conformant planning. We start with the well known observation that non-deterministic effects can be eliminated by using hidden conditions that must be intr...
متن کاملUsing Classical Planners to Solve Conformant Probabilistic Planning Problems
Motivated by the success of the translation-based approach for conformant planning, introduced by Palacios and Geffner, we present two variants of a new compilation scheme from conformant probabilistic planning problems (CPP) to variants of classical planning. In CPP, we are given a set of actions – which we assume to be deterministic in this paper, a distribution over initial states, a goal co...
متن کاملTranslation based approaches to probabilistic planning
The main focus of our work is the use of classical planning algorithms in service of more complex problems of planning under uncertainty. In particular, we are exploring compilation techniques that allow us to reduce some probabilistic planning problems into variants of classical planning, such as metric planning, resource-bounded planning, and cost-bounded suboptimal planning. Currently, our i...
متن کاملCompiling Uncertainty Away: Solving Conformant Planning Problems using a Classical Planner (Sometimes)
Even under polynomial restrictions on plan length, conformant planning remains a very hard computational problem as plan verification itself can take exponential time. This heavy price cannot be avoided in general although in many cases conformant plans are verifiable efficiently by means of simple forms of disjunctive inference. This raises the question of whether it is possible to identify an...
متن کاملCompilation Based Approaches to Probabilistic Planning - Thesis Summary
Models of planning under uncertainty, and in particular, MDPs and POMDPs have received much attention in the AI and DecisionTheoretic planning communities (Boutilier, Dean, and Hanks 1999; Kaelbling, Littman, and Cassandra 1998). These models allow for a richer and more realistic representation of real-world planning problems, but lead to increased complexity. Recently, a new approach for handl...
متن کامل